HYDRODYNAMIC AND THERMAL CHARACTERISTICS
OF AN EQUILIBRIUM TWO-PHASE
POROUS-COOLING SYSTEM
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Static characteristics are constructed for determining the permissible fluctuations in the
governing parameters and for determining the features of stable two-phase porous cooling.

Increases in the operating capacity of various types of equipment impose stiffened requirements on
reliable heat-shielding systems, among which the most promising is that in which a liquid undergoes a
phase transiton within a heated porous surface. The fact that no practical application of this method has
yet been reported reflects a serious, as yet unsurmounted obstacle: the instability of two-phase porous
cooling.

One of the basic reasons for this instability was established in [1] through analysis of the solution of
the nonlinear closed system of differential equations describing the physical model for two-phase porous
cooling. Below we continue the analysis of this process by constructing and analyzing its static character-
istics, which are analogous to the characteristics of other heat-engineering systems whose operation is
known to be unstable.

A system (in particular, the two-phase porous-cooling system with which we are concerned here) is
aperiodically unstable if, after a deviation from the steady state resulting from a small fluctuation, there
is no new steady state near the original one, and the state parameters instead undergo a large-amplitude
monotonic change. The reason for this behavior lies in the laws of the steady state, which are described
by equations in which there are no time derivatives. The static characteristics are a reflection of these
laws, and analysis of these characteristics can not only show whether the system is aperiodically unstable
but also reveal the permissible slow changes in parameters, i.e., those for which the process remains
stable.

Static Characteristics of Unstable Heat- Engineering Systems. Two types of aperiodic instabilities
of heat-engineering equipment are known at present: the "boiling crisis" and the sudden, large change in
the flow rate of the working medium in a heated channel. For the boiling of a liquid in a large volume the
static characteristic is the boiling curve, i.e., the heat flux from the heating surface to the liguid as a
function of the temperature drop. Typical boiling curves, for nitrogen and Freon-113, are shown in Fig.
1. TFigure 2 shows an illustrative hydrodynamic characteristic of a heated channel, which gives the chan-
nel resistance as a function of the flow rate of the working medium. A distinctive feature of the static
characteristics for both processes is that they are not single-valued: corresponding to a single value of
the independent parameter (along the ordinate) are three quite different values of the parameter plotted
along the abscissa (points B, D, and F). The descending part (CE) of the boiling curve reflects the de-
crease in the heat flux with an increase in the temperature drop at the transition from nucleate boiling to
film boiling, while region CE on the hydrodynamic characteristic corresponds to the decrease in the chan~
nel resistance resulting from a decrease in the vapor content of the two-phase flow.

The cooling of a solid wall by a boiling liquid remains stable until the slopes of the internal and ex-
ternal characteristics of the system satisfy the following inequality at the intersection of these character-
istics [5, 6]: )
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Fig. 1. Characteristic boiling curves for a liquid in a large vol-
ume. 1) Nitrogen [2]; 2) Freon-113 [3]. Here q is in kilocalo-
ries per square meter per hour and Tw— Tg is in Celsius de-
grees.

Fig. 2. Hydrodynamic characteristics for a uniformly heated
channel [4]. 1) Multivalued; 2) single-valued. Here AP is in
bars and M is in kilograms per hour.

E]e_\t d(]int (1)
dTu;' dTVr
The boiling curve is an internal characteristic of the system reflecting its particular properties, while the
external characteristics are characterized by the relationship between the heat flux gext supplied by exter-
nal sources and the wall temperature Tyy.

It is common to find processes (electrical heating, radiative heating, and heat evolution in fuel cells)
in which the heat flux to the surface is nearly or completely independent of the temperature, dgext/dTw
= 0. In such situations there can be a transitional boiling regime with dqjnt/dTw < 0 because the stability
condition is violated. The critical heat flux, corresponding to point C, is the boundary for stable and re-
liable operation.

A steady state can be achieved in the transitional boiling regime only if rapid external heat transfer
can be achieved in some manner (e.g., by means of vapor condensation), i.e., only if the heat-transfer
coefficient hgxt for this process is larger than the local slope of the descending part of the boiling curve:
hext = —dqext/dTw = —d/dTwhext (T — Tw)] > —dqint/dTw. However, because of the limited value of
the heat-transfer coefficient and the important destabilizing effect of the thermal resistance of the wall, a
steady state can actually be achieved in this manner only at the beginning and end of the transition regime,
where the slope of the boiling curve is small [7,8]. Accordingly, to obtain data over the entire transition
regime one makes use of either additional cooling of the heat-evolving convection element (in addition to
the cooling by boiling of the main heat-transfer surface in the steady state {3, 9]) or an unsteady regime of
cooling by boiling of the initially hot medium [2, 3].

The motion of a liquid in a heated channel is stable if the slope of the hydrodynamic (internal) char-
acteristic of the channel at the working point is algebraically larger than the slope of its external charac-
teristic (the curve showing the total flow rate M against the pressure drop APgxt over the channel, pro-
duced by a pump) [10]:

dAPext < dAPint . (2)
M dM

If a constant pressure drop dAPext/dM = 0 is maintained over the heated channel, the descending
part of the channel characteristic, dAPipt/dM < 0, is a region of unstable operation. Under these condi-
tions the aperiodic instability can be avoided by making the hydrodynamic characteristic single-valued;
this is done by inserting an additional resistance — a constricting washer — at the entrance to the chan-
nel, where a single-phase liquid is flowing. Together with the pressure drop in the channel, the resis-
tance of this washer stabilizes the process. Curve 2 in Fig. 2 shows the hydrodynamic characteristic of
the stable system.
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It is important to note that the descending region on the hydrodynamic characteristic is not peculiar
to systems in which the working medium undergoes a phase transition; it turns out that the hydrodynamic
characteristics of a gas-cooled porous plate has a shape like that of curve 1 in Fig. 2, for both volume
[11} and surface [12] heat exchange. Here the multivalued nature of the characteristic is a consequence of
the temperature dependence of the viscosity of the gaseous coolant and has the consequence that three mass
flow rates of the coolant (with quite different average wall temperatures) correspond to a certain pressure
drop at the plate. The region of stable and reliable operation is branch FH, where the coolant flow can be
controlled effectively by changing the pressure drop at the plate and where the flow rate is sufficient to
maintain the temperature of the material within a permissible range. A decrease of the pressure drop
below the value corresponding to point E leads to a sharp decrease in the coolant flow rate, which is ac-
companied by wall burnout. In contrast with systems in which the working medium undergoes a phase
transition, there is no way to change the hydrodynamic characteristic of the gas-cooled porous plate from
multivalued to single-valued.

It follows that the static characteristics can be used to determine the permissible quasisteady fluc-
tuations in the parameters (in the density of the incoming heat flux in the case of boiling or in the pressure
drop along the plate in the case of gaseous porous cooling) for which the system continues to operate stably
and reliably. As for two-phase porous cooling, we note that the static characteristic constructed in [1]
(the dependence of the pressure on the temperature in the presumed phase-transition region), the most
natural result of a solution of the equations describing the process, reveal in a straightforward manner
only the permissible fluctuations in the initial coolant temperature. Because of the particular features of
the operation of this system it is equally interesting to consider the determination of the permissible fluc-
tuations in other governing parameters, e.g., the external heat flux and the pressure drop at the plate.
Such a problem can be solved by means of characteristics including the parameter whose permissible fluc-
tuations are to be determined.

Hydrodynamic Characteristic ofan Equilibrium Two~Phase Porous—Cooling System. We adopt the
physical model and the notation of {1] without any changes. Below we will also need some quantitative re-
lationg derived in [1], to which we turn now. Under the assumption that the coolant undergoes a phase
transition within a porous plate, the specific flow rate of the coolant, G, is related to the pressure drop
P,— P, at the plate by ’

Py— Py =8 oGyl — v (1—p) +pcr| - + A=4. ” )

]

i_ p P pu

where 0 is the plate thickness; ! is the dimensionless coordinate of the phase-transition surface; « and B
are the viscous and inertial drag of the porous structure; and p', v', p", v" are the density and kinematic
viscosity of the liquid and vapor, calculated for the saturation state at a pressure equal to the given pres-
sure of the external medium, P.

The drag of the vapor part of the coolant motion is a part of the drag of the entire plate:

P—P=38 [an”(l — ) - ﬁwGl—j (r—10 ] , (4)
o ]
where P; is the pressure in the phase-transition region.

The temperature in this region is calculated from

. gexp | Goe ({—1D }
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where T is the initial temperature of the liquid coolant and g is the external heat flux.

The hydrodynamic characteristic of the two-phase porous—cooling system gives the total pressure
drop at the wall as a function of the specific flow rate. It would seem at first glance that Eq. (3) alone
would be sufficient to satisfy this requirement, but this is not the case: FEquation (3) holds only under the
assumption that the coolant undergoes a phase transition in the region with coordinate ¢, regardless of
whether a transition can actually occur here. TFor fixed parameters of the system there is a certain re-
lationship between the specific coolant flow rate and the position of the phase-transition surface for which
the pressure and temperature in the evaporation zone correspond to the saturation state. In this case we
can say that g phase transition is "probable.” A "probable" phase transition becomes "possible” if the
system is stable in this state, and, finally, the phase transition becomes "real" if the temperature of the
external wall surface does not exceed the limiting temperature.
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Accordingly, the condition for the thermodynamic equilibrium of the phase transition is fundamental
for constructing a hydrodynamic characteristic for use in evaluating the stability of the system at some
working point. We will use the expression "equilibrium model" for this model of two-phase porous cooling
with a phase transition of the coolant which is at thermodynamic equilibrium and with a local thermal
equilibrium between the wall material and the coolant, in both flow regions.

As one of the parameters governing the equilibrium nature of the phase transition in the region with
coordinate ! it is convenient to use the enthalpy i7" of the dry saturated vapor which is formed instead of
its temperature T}, since Fq. (5) then reduces to the simpler, more accurate form

wm(fcamn]
frl'—cmTw = 26 - (6)
We transform this equation by means of
gewp [ 25— |
i, = " ZG — (g — T ) (7}

so that we ean determine both the enthalpy of the saturated vapor and the pressure in the phase-transition
region from the known saturation parameters for evaporation on the outer surface of the wall, where the
pressure P; of the surrounding medium is specified. The pressure difference and the enthalpy of the dry
saturated vapor are related, in the case of equilibrium phase transitions within the plate and on its exter-
nal surface, by some one-to-one correspondence

=i, =P, — Py, (8
which is governed solely by the nature of the coolant.
Using the linear approximation of this dependence at the point where the pressure is equal to the

pressure of the surrounding medium,

- di

=i = P (P, —Py), ¢)]

P=P,

wé can combine (4) and (7) into a single transcendental analytic equation for the coolant flow rate G for the
case of an equilibrium phase transition in region i:

gexp [G&" (-1 }
s e (f — CpnTw) =
= ar 6[an"(l——l) +f5—Gj— 1—1 J . (10)
Py [Y

The necessary total pressure drop at the plate is calculated from the known flow rate by means of
Eq. (3). A systematic solution of Egs. (10) and (3) for all values of the parameter I, followed by the elim-
ination of this parameter, also gives the form of the hydrodynamic characteristic for a two-phase porous-
cooling system. The parameters for this process are the external heat load, the initial coolant tempera-
ture, the nature of the coolant, the pressure of the surrounding medium, and the physical characteristics
of the porous plate.

The solution of implicit Eq. (8) or even of its simplified analytic version (10) requires laborious cal-
culations, but there is one particular case in which the calculations are not as formidable. Over the broad
pressure range from 1 to 120 bars the enthalpy of saturated water vapor remains constant within 4.5%: i"
= const [13]. In this case we can use, instead of (10), the following simpler characteristic equation to de-
termine the specific flow rate in the water—¢ooled system:

G8¢ 11)

gexp | S50 ]
2G _ {iu - Cme).
Figure 3 illustrates the solution of Fgs. (11) and (3); for ease in comparison with the data of [1] we
have used the same parameters for curves 1-3: the coolant is water, initially at Tw = 20°C; the pressure
of the surrounding medium is Py = 10 bars; the wall thickness is § = 5 mm; the porosity is @I = 0.2; and
the drag coefficients are o = 3.5 10¥ m=2 and B = 1.2-108 m~!. The heat flux and the effective thermal

conductivity of the vapor region are the same.
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Fig. 3. Hydrodynamic characteristic of an equilibrium two-phase
porous-cooling system. 1) q = 3.5-107 W/m?, Ay = 0.65 W/(m -deg);
2) 1.8-107 and 1.0, respectively; 3) 8.3-10%and 2.6.

Fig. 4. Thermal characteristic (dependence of the external heat
flux on the position of the equilibrium phase-transition surface) of
a two-phase porous-cooling system. 1) q* = 3.5-107 W/m?, A,
=0.65 W/ (m -deg); 2) 1.8-10% and 1.0, respectively; 3) 8.3 -108
and 2.6; 4) from [17].

The hydrodynamic characteristics are plotted in normalized coordinates; the pressure drop is di-
vided by (P;— Py)* = 1.25 bars, which provides an equilibrium phase transition in the region with = 0.95.
The corresponding Reynolds number of the coolant flow is Re = 0.1. The coolant flow rates are divided by
Gy =4.34 kg/ (m?-sec), the flow rate of a liquid corresponding to a pressure drop of (Py— Py)* = 1.25 bars
in viscous flow (Re = 0.0). i

The sloping dashed curves (I = const) establish the correspondence between the coolant flow rate and
the pressure drop at the plate for a fixed position of the phase-transition region. In particular, the curve
¢ =1.0 determines the drag of the plate for the single-phase liquid flow, while the curve I = 0.0 gives this
drag for a flow of dry vapor. The gradual deviation of the dashed curves from their originally rectilinear
shape reflects the increase of inertial drag as the flow regime changes from viscous (the Darcy regime) to
transitional.

The hydrodynamic characteristics of all three systems intersect at the single working point a, be-
cause of the corresponding choice of the parameters A, and q. For curves 1 and 2, however, the working
point is on the ascending part, while for curve 3 it is on the descending part. According to the boundary
conditions, constant pressure drop Py— P; = 1.25 bars is maintained at the plate. Then according to sta-
bility condition (2), curves 1 and 2 are stable at working point @, while curve 3 is unstable. For curve 2
there is yet another point where we have Py— Py/(P;— Py)* = 1.0 (point b), but it corresponds to an un-
stable regime. It should also be noted that curve 3 in unstable for coolant evaporation in any region within
the plate, including the external surface (! = 1.0). Therefore, the method adopted in [14-16] for calculating
the coolant flow rate from the heat-balance equation at the external surface is not appropriate for use in
solving the thermal component of the process of two-phase porous cooling without a consideration of sta-
bility.

The conclusions drawn regarding the stability of a two-phase porous—cooling system on the basis of
an analysis of its hydrodynamic characteristic agree fully with the results of an analysis of the intersec-
tion of the saturation curve and the temperature dependence of the pressure in the presumed phase-transi-
tion region. Furthermore, the hydrodynamic characteristic of the stable system can be used to find the
permissible slow oscillations of the pressure drop along the plate. For curve 1, for example, the decrease
in the delivery pressure is accompanied by a gradual deepening of the evaporation region, all the way to
the state corresponding to the stability boundary (point d); then there is a rapid transition of the evapora-
tion region to the internal plate surface, which causes a significant decrease in the coolant flow rate. Point
d determines the minimum pressure drop for curve 1. Strictly speaking, within the framework of this
model, only those permissible oscillations of the pressure drop which are due to oscillations of the delivery
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pressure can be determined accurately. A pressure change of the external medium changes the physical
properties of the coolant and thus the hydrodynamic characteristic. We can assume, however, that the
error due to the permissible oscillations of the governing state is no larger than the error of the model
itself; thus the permissible pressure fluctuations of the external medium can also be found, within the
error with which the characteristic is plotted.

The solution of Egs. (10) and (3) must be regarded as approximate, since important assumptions
were made in the development of a model for the process. Nevertheless, these results are of consider-
able interest, since this problem not only cannot be solved in its exact formulation, it cannot even be
formulated, because of a nearly complete lack of information on the behavior of the heat transfer and the
resistance in the evaporation of a filtering coolant. The heat transfer and drag in the motion of even a
single-phase coolant in a porous medium clearly require more study.

Thermal Characteristic of an Equilibrium Two-Phase Porous—Cooling System. The permissible
fluctuations in the external heat load in a two-phase porous—cooling system can be determined from the
static thermal characteristic of this system, i.e., from the heat flux as a function of the coordinate of the
equilibrium phase-transition surface. Transforming (6), we find the basic equation for this calculation:

G’

2

q:(i::—cme)Gexp{ ) } ; (12)
where the specific coolant flow rate G and the enthalpy i;" of the saturation vapor depend on the position of
the phase-transition surface.

Tor a constant pressure drop along the plate the specific coolant flow rate changes markedly as the
phase~transition surface moves. The corresponding equation is

__ woomo oy n
G = — 211( 14 ]/1+4Rew), (13)

whereRe = [(P;— Py)/ Gvaa)][(B/@)/ (u")] is the Reynolds number of the coolant flow, and m = [L + v"/v'(1 —1)]
andn = [l + p'/p"(1 —1)] are auxiliary complexes found by solving Eq. (3), which is of second degree in
the specific flow rate G.

The change in the enthalpy of the saturated vapor as the evaporation zone moves within the porous
wall is due to an increase in the saturation pressure. Egquations for the increase in the saturation pressure
and the corresponding change in the enthalpy of the vapor formed from the saturation parameters for eva-
poration at the external surface were obtained earlier: Egs. (3) and (8) or (9), respectively. The linear
approximation of the dependence of the enthalpy of the saturated vapor on the pressure gives us an analytic
form of the equation for the desired static characteristic:

1=Gen [ Z 0 —p Jfi,—enT)

di’ ' G (14)
L 6(05@”(1—1) A Sy g P(

Plp, | Y J

If the coolant is water, the second term in braces vanishes, since the enthalpy of saturated water
vapor remains essentially constant over a wide pressure range.

Figure 4 shows the thermal characteristics of those curves (1-3) whose hydrodynamic characteristics
are plotted in Fig. 3 (1-3). For all these curves a constant pressure drop of Py— P; = 1.25 bars is main-
tained along the wall. The heat load for each curve is divided by the value q* at which the phase-transi-
tion region is at I = 0.95. The corresponding normalizing values are given in the figure caption.

With q = g* the curves intersect at the. common point @, but working point a lies on the descending
parts of curves 1 and 2 and on the ascending part of curve 3. Furthermore, for curve 2 at q = q* a phase
transition in the region with coordinate I = 0.4 (working point b) also satisfies the equilibrium condition.
On the thermal characteristics the stability region is a descending region, as follows from the physical

_nature of the process. Thus a slight increase in the heat load in stable system 1 from steady state a
causes the interface to move deeper; it returns to its initial position when the perturbations are subse-
quently removed. On unstable curve 3 the initial increase in the external heat flux involves a continuous
advance of the evaporation zone toward the internal surface of the plate, since a lower heat supply to the
external surface is required for an equilibrium phase transition in all intermediate states. The condition
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for the stability of two-phase porous cooling in terms of the thermal characteristic is

—— 0. {

This condition holds for a system with any type of coolant, but for a water—cooled system it is a
simpler matter to plot the characteristic. An analogous condition for that particular case (without a gen-
eralization) has also been found by solving the linearized nonsteady-state system of eguations, for a sim-
pler formulation of the entire problem [17]. Curve 4 in Fig. 4 shows one result from [17]. The existence

of yet another stability region for small values of i on curve 4 is due to the specification of a nonphysical
boundary condition — the constancy of the temperature of the internal surface of the wall being penetrated.

It is a simple matter to find the limiting external heat load in a stable system from the thermal char-
acteristic. A gradual increase in the heat load in [1] caused a gradual deepening of the evaporation zone,
to i = 0.6 (point ¢); beyond this point even a slight perturbation in the external heat flux leads to boiling at
the internal surface.

Study of the apericdic stability of a two~phase porous—cooling system on the basis of various static
characteristics leads to the same results. Fach of these characteristics makes it possible to determine
the permissible perturbation of one of the governing parameters in a stable system in a simple manner.
With a set of characteristics available it is possible to find the permissible fluctuations in all the gover-
ning parameters and to make a multifaceted study of the process.

NOTATION
G is the specific mass flow rate of coolant;
l is the dimensionless coordinate of the phase-tfransition region;
é is the wall thickness;
P, is the delivery pressure;
Py is the ambient pressure;
q is the external heat flux;
o and B are the viscous and inertial drag coefficients of the pbrous structure;
i is the porosity of the wall material;
Ay is the effective thermal conductivity of the vapor region;
u is the dynamic viscosity;
v is the kinematic viscosity;
o) is the density;
c is the specific heat;
r is the total heat of vaporization;
i is the enthalpy;
Gy is the specific flow rate of the coolant in the Darcy regime;
Re is the Reynolds number.

Subscripts and Superscripts

"and " physical properties of the liquid and vapor, respectively, in the saturation state;
l parameters in the phase-transition region;
* normalized values.
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